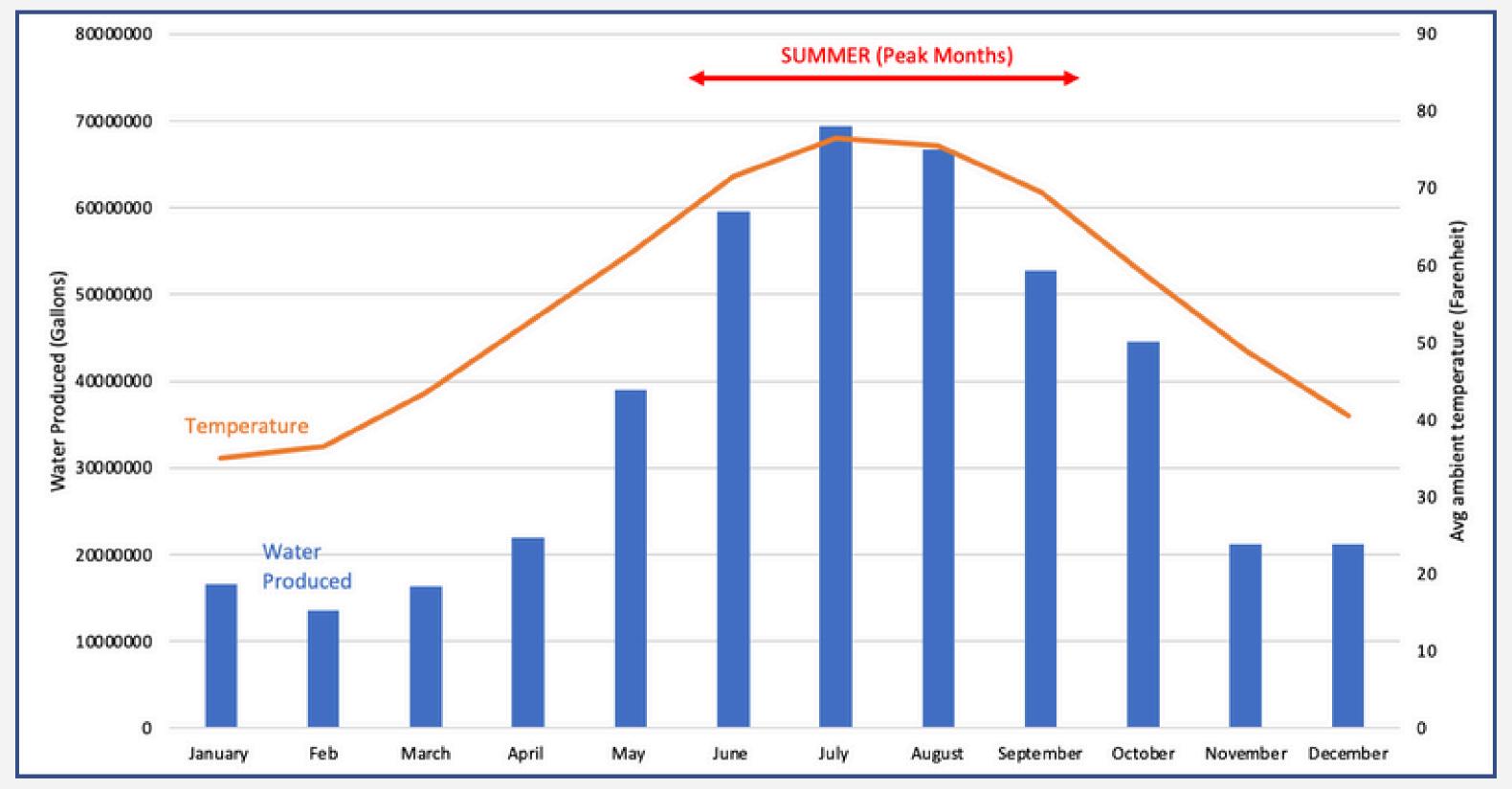


IMPROVING THE SUSTAINABILITY OF DRINKING WATER DESALINATION IN CAPE MAY, NJ

May 7th 2025

FINAL BRIEFING AGENDA



WATER DEMAND IN CAPE MAY

PROBLEM STATEMENT

CAPE MAY CITY'S ONLY SOURCE OF DRINKING WATER, AN AGING DESALINATION PLANT, IS STRUGGLING TO MEET PEAK DEMAND

STRATEGIC SOLUTIONS

IMPROVE OPERATIONAL EFFICIENCY

MAXIMIZE DESALINATION YIELD

BUILD A WATER DEMAND REDUCTION PLAN

FINANCIAL ANALYSES

4 KEY AREAS

75% desalinated, 25% waste called "concentrate"

Efficient operations: Energy Recovery Device

Reduce water demand:
Behavioral change through
various policies

Economic viability for sustainable operations

CIRCULARITY

SOLUTION SUMMARY

Cape May generates 109M gallon of concentrate per year. The potential commercial value of its applications:

Salt extracted from concentrate

Minerals extracted from concentrate

Irrigate landscaping with concentrate

CIRCULARITY

SOLUTION: MONETIZE WASTE

Salt

Minerals

Landscaping

VALUE

\$165 PER TON (POST EVAPORATION)

HIGHLY VARIABLE

DEMAND OFFSET OF 1
MILLION GALLONS PER
YEAR

FORM

EVAPORATED

OFTEN EVAPORATED

LIQUID

IMPLEMENTATION EASE

LOW

LOW

HIGH

POTENTIAL BUYERS

CIRCULARITY

SOLUTION: MONETIZE WASTE

Salt

Minerals

VALUE

\$165 PER TON (POST **EVAPORATION)**

HIGHLY VARIABLE

FORM

EVAPORATED

OFTEN EVAPORATED

IMPLEMENTATION EASE

LOW

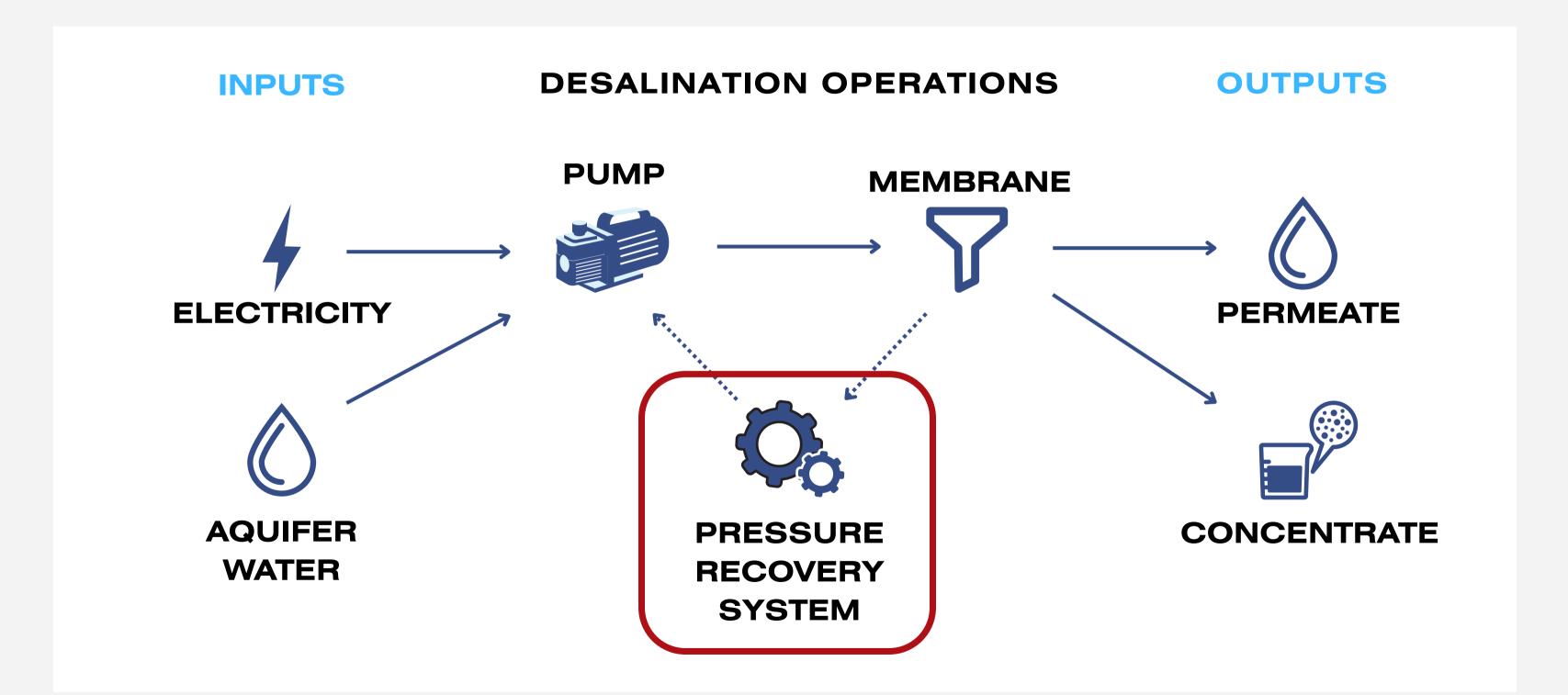
LOW

POTENTIAL BUYERS

Landscaping

DEMAND OFFSET OF 1 MILLION GALLONS PER YEAR

LIQUID


HIGH

Best use case: Irrigating city land with concentrate

DESALINATION

PROBLEM SUMMARY

DESALINATION

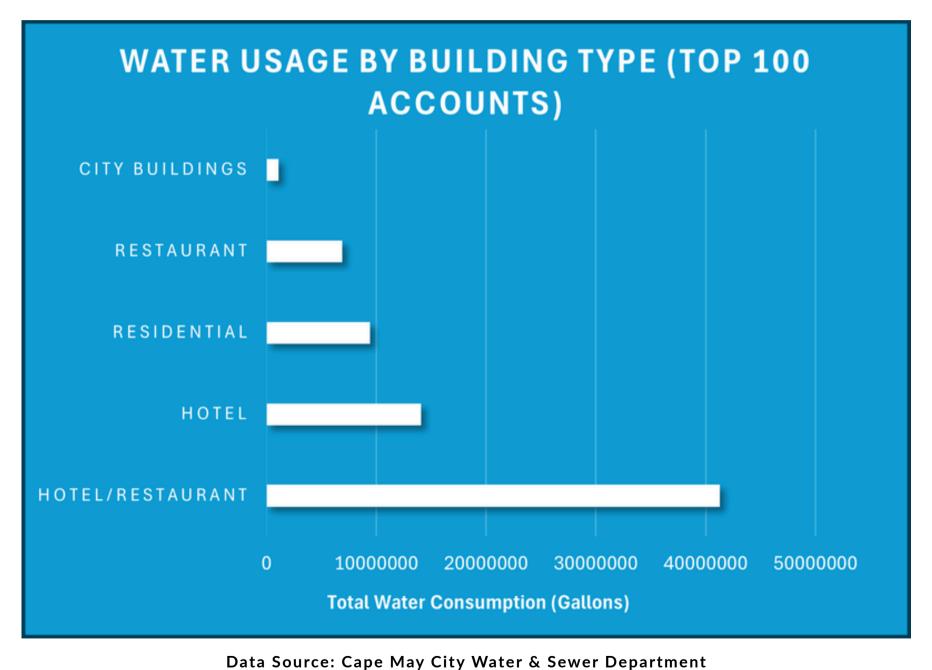
SOLUTION SUMMARY

Problem: Sustainability of desalination plant operations

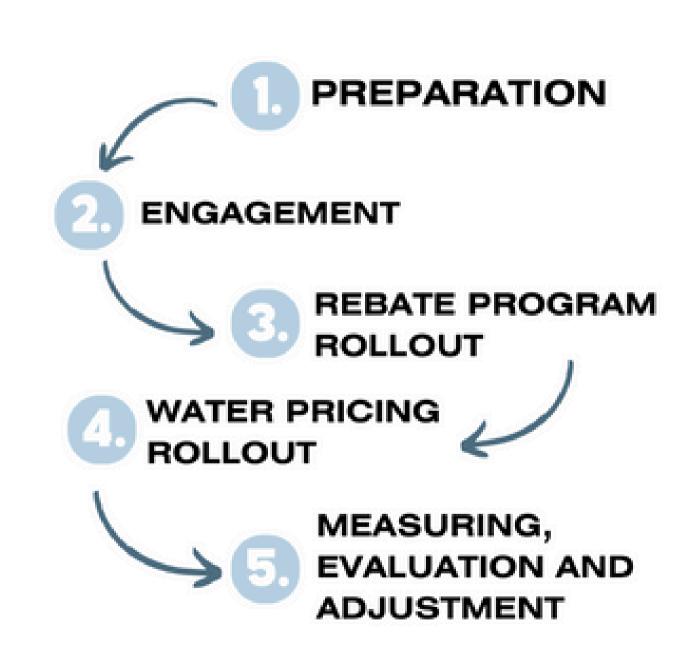
Solution: Use energy efficient measures to increase plant lifespan

Main Findings:

Cape May can significantly improve its operational and energy efficiency by:

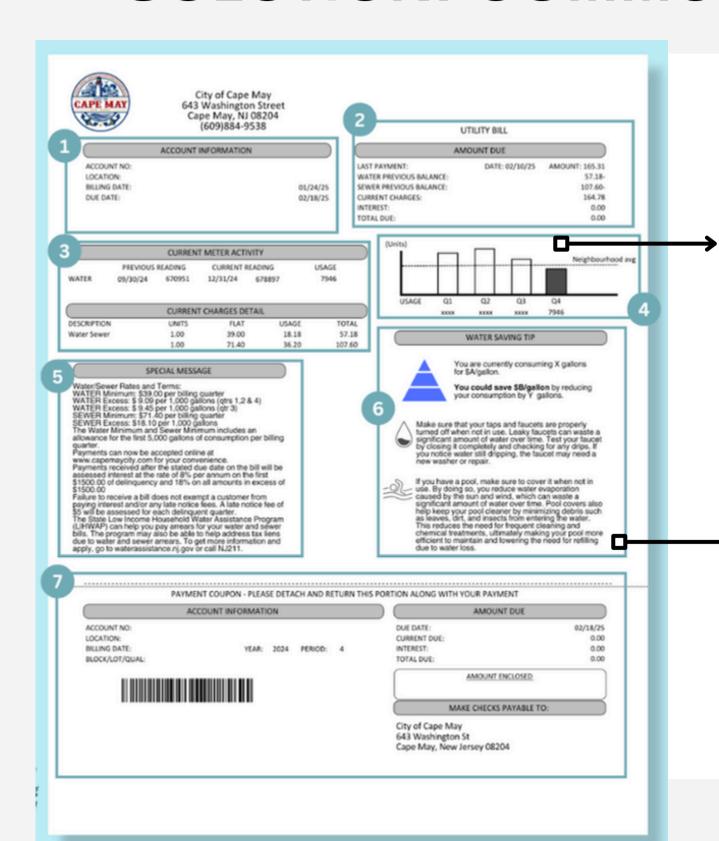


Installing an energy recovery system in the new desalination facility. Cape May is now on track to install three turbochargers


WATER CONSERVATION PROPOSAL

WATER USAGE ANALYSIS

PROPOSED IMPLEMENTATION TIMELINE



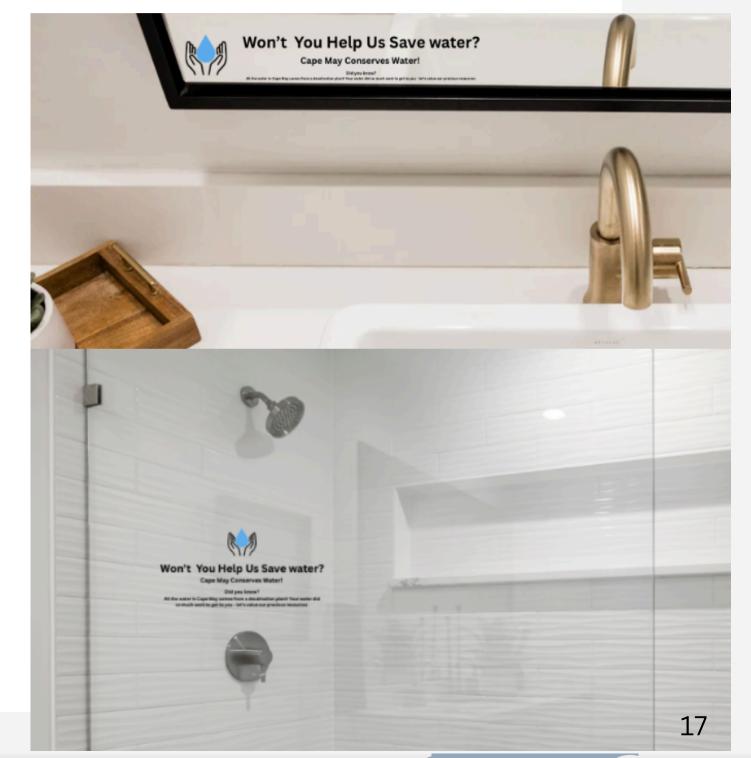
SOLUTION: COMMUNITY ENGAGEMENT

Elementary and Middle School Curriculum	Junior High and High School Curriculum - LCMR		
 Understanding water and the water cycle Recognizing the importance of water and its critical uses Suggested activity: journaling and logging daily water use Addressing water scarcity and conservation strategies Exploring the history of water in Cape May Field trip to the Cape May desalination site (only accessing areas that are safe for the children) 	 In-depth analysis of water usage and critical applications Water scarcity challenges and conservation strategies Historical perspective on water management in Cape May Field Trip to the Cape May desalination plant 		
Follow-up activity: - Designing posters for public awareness campaigns	Follow-up activities: - Selecting posters designed for public awareness campaign - Identifying optimal locations for public educational signage - Collaboration between school newspaper and Exit Zero, the local newspaper, on the source and operations of water supply in Cape May		

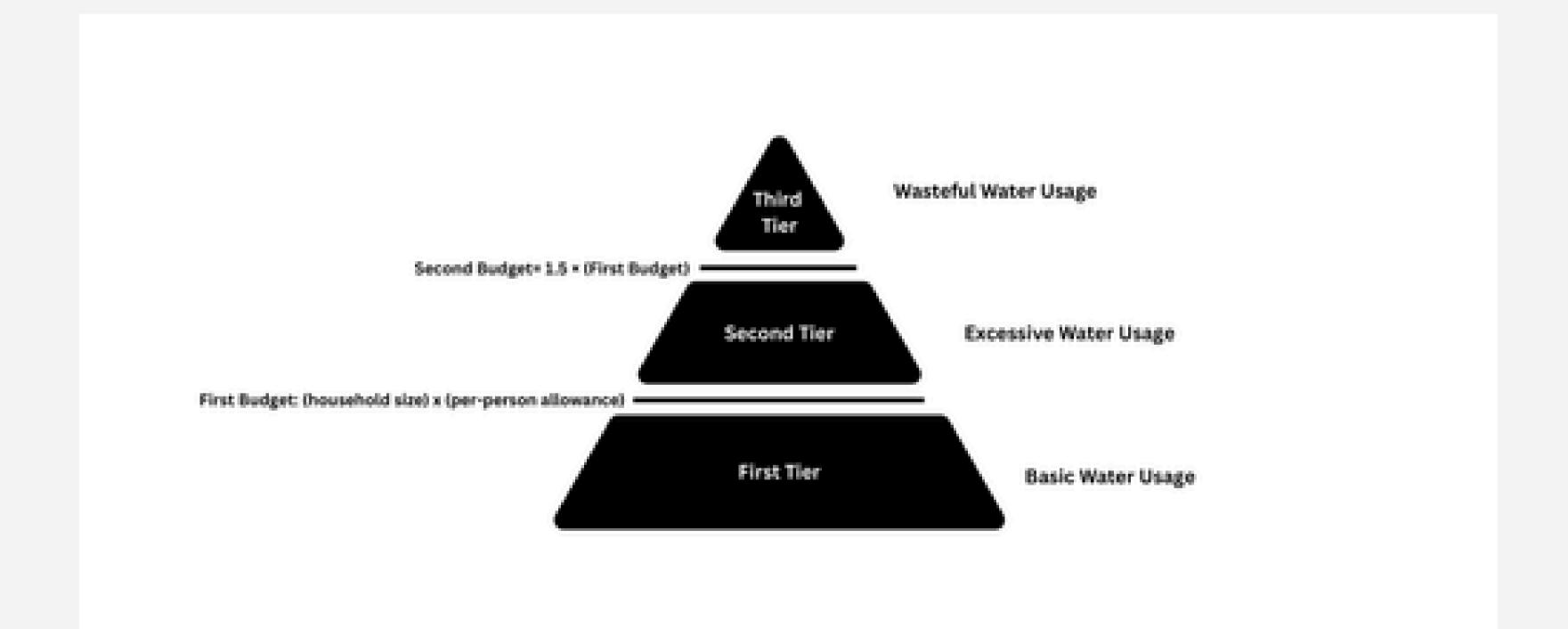
SOLUTION: COMMUNITY ENGAGEMENT

4 Consumption Graph

This is a visual representation of water usage over different time periods. It compares the customer's usage with the neighborhood average, giving insights into how the customer's water consumption measures up against similar households in the area.


The neighbour average is derived based on the average usage of similiar housing types within a block or street for landed premises.

6 Water Saving Tips
Practical advice for water


conservation is provided here. It offers suggestions on how customers can reduce water usage, such as checking for leaks, adjusting faucets, or covering pools to prevent unnecessary water loss.

SOLUTION: BUSINESS ENGAGEMENT

Category	Measure	Impact		
Guest Engagement	Place mirror-adjacent signage on water use	Increases guest awareness and action (Stanford SPARQ, n.d.)		
Guest Engagement	Offer opt-out options for daily linen/towel changes Reduces laundry-relations use (Han & Hyun,			
Bathroom Fixtures	Install low-flow showerheads and faucet aerators	Cuts water use by 20-30% (American Hotel & Lodging Association, n.d.)		
Toilet Systems	Use dual-flush or low-flow toilets	Reduces flush volume significantly (EPA, 2025; (Northern Ireland Water, 2024))		
Kitchen and Laundry Operations	Upgrade to ENERGY STAR-rated dishwashers and washers	Lowers water and energy consumption (EPA, 2017)		
Irrigation Systems	Install smart irrigation controllers and drought-tolerant landscaping	Minimizes outdoor water usage (Bwambale et al., 2022)		
Leak Detection	Implement routine leak audits and monitoring systems	Prevents unintentional waste (Snyder et al., 2024)		

RESIDENTIAL WATER PRICING MODEL

REBATE PROGRAM CASE STUDIES

<u>Case Study</u>	<u>Initiatives</u>	<u>Water Savings</u>	<u>Cost Savings</u>
Hilton Palacio del Rio Hotel	Retrofits for toilets, faucets, showerheads and water-cooled ice machines	26 million gallons	\$160,000 in water, sewer and energy costs per year
Westin Riverwalk Hotel in San Antonio	washing machine		\$20,000 in water, sewer and energy costs

COST BENEFIT ANALYSIS

TOTAL UPFRONT COST (ONE TIME \$)

~\$150,000

CONSERVATION COST (\$/GALLON)

\$0.003

LIFETIME CONSERVATION (GALLONS/LIFETIME)

46,000,000+

COST SAVINGS TO HOTELS (\$/HOTEL)

\$15,000-50,000

COST-EFFECTIVE SOLUTION TO PROMOTE WATER CONSERVATION AND SUPPORT TOURISM INDUSTRY

DESALINATION

FINANCIAL PAYBACK ANALYSIS

TOTAL UPFRONT COST

ANNUAL COST SAVINGS

\$195,000

\$15,000-30,000

LIFETIME COST SAVINGS

PAYBACK PERIOD

\$450,000

11 YEARS

ERDS CAN REDUCE ELECTRICITY NEEDS, LOWER UTILITY BILLS AND GENERATE A NET PROFIT FOR CAPE MAY

FINANCE

PROBLEM SUMMARY

LEVERAGE UTILITY BILL ANALYSIS TO QUANTIFY POTENTIAL COST SAVINGS

Utility bill expenses for desalination plant

kW = charges based on capacity (unable to offset) kWh = charges based on consumption (can be offset)

Utility bill summary

- Data based on provided utility bills
- kWh is the cost that can be saved
- ~67% in 2023 and ~73% in 2024
- Solar can help offset the \$/kWh cost of utility bill

ENERGY USAGE DRIVES HIGH OPERATING **COSTS FOR PLANT**

FINANCE

CAPACITY & COST ASSESSMENT

PROPOSED SOLAR CAPACITY EXPANSION FOR DESALINATION OPERATIONS

Illustrative mapping of 133kW solar system

Proposal summary

- Propose to add significant capacity to existing solar array using Helioscope software
- Projected annual savings of ~\$40,000 to reduce operating costs
- Payback period of 5 to 6 years over the 30 year asset life

ONSITE SOLAR COULD REDUCE ANNUAL COSTS BY \$40K

FINANCE

SOLUTION SUMMARY

Problem: Improve economic viability of desalination plant operations

Solution: Install behind-the-meter solar to reduce utility bills

Main Findings:

Cape May can significantly reduce operating costs by generating onsite electricity to reduce utility bill expenses:

Install an onsite photovoltaic solar system on the new desalination facility

NEXT STEPS

EASY IRRIGATE WITH CONCENTRATE ENSURE PLANS FOR NEW PLANT MEET BEST PRACTICES INITIATE ONSITE SOLAR DEVELOPMENT PROCESS **DEVELOP REBATE INCENTIVE PROGRAM** IMPLEMENT NEW WATER PRICING SYSTEM

TEAM MEMBERS

LYNNETTE WIDDERInstructor

VALERIE YI
Project Manager
Desalination/Demand

BRIAN KIM
Project Manager
Demand

NATE GOLDMAN
Circularity

LIZ METRULAS
Circularity

RENATA BARROSOCircularity/Finance

MICHAEL SOLAZZO
Finance

AMELIA GALVIN
Finance

ELIZABETH KIEFERFinance

CITRA ATRINA
Demand

ARIELA FARCHI
Desalination/Demand

LENA DEUTSCH
Desalination

APPENDIX

DESALINATION

FINANCIAL PAYBACK ANALYSIS

METRIC	CALCULATION APPROACH	MODELED ESTIMATE
Upfront Cost	Number of devices (#) multiplied by device cost (\$)	\$195,000
Annual Cost Savings	Reduction in electricity usage (kWh) multiplied by electricity cost (\$/kWh)	\$15-30,000
Lifetime Cost Savings	Cumulative cost savings over 30 years (\$ minus upfront cost (\$)	\$450,000
Payback period	Upfront cost (\$) divided by annual cost savings (\$/y)	11 years

DESALINATION

FINANCIAL PAYBACK ANALYSIS

PAYBACK PERIOD (YEARS) LIFETIME COST SAVINGS (\$)

Reduction in energy needs for water pumps due to ERD installation (%)

		10%	15%	20%	25%	30%
mps / age (%)	55%	22.4	16.0	12.4	10.2	8.6
ater pui ergy us	60%	20.9	14.8	11.5	9.4	8.0
Energy for water pumps , total plant energy usage (65%	19.5	13.8	10.7	8.7	7.4
Energ total p	70%	18.4	13.0	10.0	8.2	6.9

10%	15%	20%	25%	30%
\$94	\$238	\$383	\$527	\$672
\$120	\$278	\$435	\$593	\$751
\$147	\$317	\$488	\$659	\$830
\$173	\$357	\$541	\$724	\$908

COST BENEFIT ANALYSIS: UNIT VIEW

SHOWERHEAD (10 YR USEFUL LIFE) TOILETS (30 YR USEFUL LIFE)

Rebate		<u>Rebate</u>	Customer Perspective		Rebate		Customer Perspective	
			Payback Lifetime				Payback	Lifetime
_	(\$)	(% of cost)	period (yrs)	cost savings (\$)	(\$)	(% of cost)	period (yrs)	cost savings (\$)
	\$0	0%	1.3	\$198	\$80	40%	22.0	\$39
	\$5	17%	1.1	\$203	\$100	50%	22.0	\$59
	\$10	33%	0.9	\$208	\$120	60%	17.6	\$79
	\$15	50%	0.7	\$213	\$140	70%	13.2	\$99
	\$20	67%	0.4	\$218	\$160	80%	8.8	\$119
	\$25	83%	0.2	\$223	\$180	90%	4.4	\$139
	\$30	100%	0.0	\$228	\$200	100%	0.0	\$159

WATER-EFFICIENT FIXTURES REDUCE WATER BILLS & PAYBACK PERIODS ON A UNIT BASIS ARE POSITIVE

COST BENEFIT ANALYSIS: HOTEL VIEW

ILLUSTRATIVE IMPACT OF REBATE PROGRAM ON TARGET HOTELS

	Annual water usage, 2024	Est. annual water savings	Reduction	Lifetime cost savings
Hotel	(g)	(g)	(%)	(\$)
Congress Hall	10,248,000	374,344	3.7%	\$33,590
Grand Hotel	8,821,000	581,080	6.6%	\$52,009
The Beach Shack	4,640,630	272,728	5.9%	\$24,536
La Mer Beachfront Resort	3,937,530	570,568	14.5%	\$51,072
Marquis de Lafayette	3,620,432	290,248	8.0%	\$26,097
Sandpiper Beach Club	2,752,000	181,624	6.6%	\$16,419
Montreal Beach Resort	2,594,819	248,200	9.6%	\$22,351
Ocean Club Hotel	2,408,000	318,280	13.2%	\$28,594
The Inn of Cape May	1,914,554	181,624	9.5%	\$16,419
ICONA Cape May	1,773,040	199,144	11.2%	\$17,980
Total	42,710,005	3,217,840	7.5%	\$289,066

AVG.
REDUCTION
IN USAGE
OF 7.5%

AVG.
LIFETIME
COST
SAVINGS
OF \$19K

COST BENEFIT ANALYSIS: CITY VIEW

ILLUSTRATIVE IMPACT OF REBATE PROGRAM ON CAPE MAY CITY

Program Scale		Reb	oate	Total Costs to Cape May (\$)			Impact Analysis		
				Program	Rebate	Total	Lifetime water	Cost per water	
	(#)		(%)	administration	payments	costs	savings (g)	saved (\$/g)	
Showerhead	910	\$15	50%	\$5,000	\$13,650	\$18,650	26,572,000	\$0.001	
Toilet	960	\$140	70%	\$5,000	\$134,400	\$139,400	19,622,400	\$0.007	
Total				\$10,000	\$148,050	\$158,050	46,194,400	\$0.003	

COST-EFFECTIVE SOLUTION TO PROMOTE WATER CONSERVATION AND SUPPORT TOURISM INDUSTRY